A Generative Artificial Intelligence Methodology for Automated Zero-Shot Data Tagging to Support Tactical Zero Trust Architecture Implementation

Authors

  • Charles Barzyk
  • Joseph Hickson
  • Jerik Ochoa
  • Jasmine Talley
  • Mikal Willeke
  • Sean Coffey
  • John Pavlik
  • Nathaniel Bastian

DOI:

https://doi.org/10.37266/ISER.2025v12i2.pp83-88

Keywords:

Generative AI, Large Language Model, In-Context Learning, Data Tagging, Zero Trust Architecture, Cybersecurity

Abstract

A significant challenge in the implementation of the military’s cybersecurity framework for Zero Trust Architecture (ZTA) is that the current approach for data tagging is done manually, which is a time-consuming and error-prone process that undermines the efficiency and effectiveness of cybersecurity measures. This paper introduces an innovative methodology that leverages generative artificial intelligence (AI) for automated data tagging to support tactical ZTA implementation within mili- tary mission command systems (MCS). Specifically, we develop the Generative AI ZEro-trust Labeling (GAZEL) tool, which uses a fine-tuned Large Language Model combined with in-context learning for automated zero-shot tagging of MCS message data according to predefined access control categories, streamlining the path towards an agile and fortified cybersecurity posture.

References

Army Cyber Center of Excellence. (2023). Zero trust tactical implementation guide (Technical Report). Fort Gordon, Georgia: Cyber Center of Excellence, Fort Gordon. (Controlled by: Army CCoE. CUI Category: CTI, OPSEC. Dissemination Control: FEDCON.)

Barrett, C., Boyd, B., Bursztein, E., Carlini, N., Chen, B., Choi, J., … Yang, D. (2023). Identifying and mitigating the security risks of generative ai. Foundations and Trends® in Privacy and Security, 6(1), 1–52. doi: 10.1561/3300000041

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., … Liang, P. (2021). On the opportunities and risks of foundation models. ArXiv, abs/2108.07258. Retrieved from https://api.semanticscholar.org/CorpusID: 237091588

Cybersecurity and Infrastructure Security Agency. (2020). Ed 21-01: Mitigate solarwinds orion code compromise. Retrieved from https://www.cisa.gov/news-events/directives/ed-21-01-mitigate-solarwinds-orion-code-compromise.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). Bert: Pre-training of deep bidirectional transformers for language understanding.

Ding, B., Qin, C., Liu, L., Chia, Y. K., Joty, S., Li, B., & Bing, L. (2023). Is gpt-3 a good data annotator?

Executive order 14028: Improving the nation’s cybersecurity. (2021). Retrieved from https://www.gsa.gov/technology/ it-contract-vehicles-and-purchasing-programs/technology-products-services/it-security/executive-order-14028

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., … Bengio, Y. (2014). Generative adversarial nets. In Proceedings of the 27th international conference on neural information processing systems - volume 2 (p. 2672– 2680). Cambridge, MA, USA: MIT Press.

Hu, J. E., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., & Chen, W. (2021). Lora: Low-rank adaptation of large language models. ArXiv, abs/2106.09685. Retrieved from https://api.semanticscholar.org/CorpusID:235458009

ISOO. (2018). Marking classified national security information. Retrieved from https://www.archives.gov/files/ isoo/training/marking-booklet-revision.pdf

Kaur, R., Gabrijelčič, D., & Klobučar, T. (2023). Artificial intelligence for cybersecurity: Literature review and future research directions. Information Fusion, 97, 101804. doi: https://doi.org/10.1016/j.inffus.2023.101804

Keall, C. (2019). Experts warning as microsoft restores office 365 after worldwide outage. Retrieved from

https://www.nzherald.co.nz/business/experts-warning-as-microsoft-restores-office-365-after

-worldwide-outage/JZVIHQJZSLT3WPXTEAXBVROSGQ/?c_id=3&objectid=12286870

Kucharavy, A., Schillaci, Z. M., Mar’echal, L., Wursch, M., Dolamic, L., Sabonnadiere, R., … Lenders, V. (2023). Funda- mentals of generative large language models and perspectives in cyber-defense. ArXiv, abs/2303.12132. Retrieved from https://api.semanticscholar.org/CorpusID:257663521

National Institute of Standards and Technology. (2018). Framework for improving critical infrastructure cybersecurity. Retrieved from https://nvlpubs.nist.gov/nistpubs/cswp/nist.cswp.04162018.pdf

Pangakis, N., Wolken, S., & Fasching, N. (2023). Automated annotation with generative ai requires validation. ArXiv, abs/2306.00176. Retrieved from https://api.semanticscholar.org/CorpusID:259000016

Pourpanah, F., Abdar, M., Luo, Y., Zhou, X., Wang, R., Lim, C. P., … Wu, Q. M. J. (2023). A review of generalized zero-shot learning methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(4), 4051-4070.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … Polosukhin, I. (2017). Atten- tion is all you need. In I. Guyon et al. (Eds.), Advances in neural information processing systems (Vol. 30). Curran Associates, Inc. Retrieved from https://proceedings.neurips.cc/paper_files/paper/2017/file/ 3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Wolfram, S. (2023, Feb). What is chatgpt doing ... and why does it work? Retrieved from https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/ (Accessed: 2023-03-08)

Woodiss-Field, A., Johnstone, M. N., & Haskell-Dowland, P. (2024). Examination of traditional botnet detection on iot-based bots. Sensors, 24(3). Retrieved from https://www.mdpi.com/1424-8220/24/3/1027 doi: 10.3390/s24031027

Young, S. D. (2021). Improving detection of cybersecurity vulnerabilities and incidents on federal government systems through endpoint detection and response. Retrieved from https://www.whitehouse.gov/wp-content/uploads/2021/10/ M-22-01.pdf

Young, S. D. (2022). Moving the u.s. government toward zero trust cybersecurity principles. Retrieved from https:// www.whitehouse.gov/wp-content/uploads/2022/01/M-22-09.pdf

Zhang, P., Zeng, G., Wang, T., & Lu, W. (2024). TinyLlama: An open-source small language model.

Published

2025-05-12

How to Cite

Barzyk, C., Hickson, J., Ochoa, J., Talley, J., Willeke, M., Coffey, S., Pavlik, J., & Bastian, N. (2025). A Generative Artificial Intelligence Methodology for Automated Zero-Shot Data Tagging to Support Tactical Zero Trust Architecture Implementation. Industrial and Systems Engineering Review, 12(2), 83-88. https://doi.org/10.37266/ISER.2025v12i2.pp83-88