Approaches for the Simulation of Deformable Objects in Manufacturing Systems
DOI:
https://doi.org/10.37266/ISER.2013v1i1.pp68-74Abstract
The validation of control software using methods of Virtual Commissioning (VC), with its origin in the field of machine tools, gains more and more importance in other application areas like process engineering or material-flow-intensive production systems. Especially because of the increasing complexity of technical systems the validation of the control software quality is a major challenge in production technology. To reduce the efforts of modeling and to increase the value of simulation results, a so-called physically model is integrated in the VC. Currently the physically based Virtual Commissioning is restricted to rigid body simulation objects. In this publication new methods for the simulation of deformable objects are shown and validated in an industrial context. Therefore the hybridization of existing simulation methods from computer science using so called physic engines is introduced as a method that simplifies the description of complex simulation objects by adapting well known simulation models. The new approach is comparable to a mixture of a multi body simulation and a real-time finite element simulation.References
Albert, W. (2010). Total Cost of Ownership bei Prozessleitsystemen. In, atp edition (1/2), 24–30.
Eberly, D. H., & Shoemake, K. (2004). Game physics. Boston: Elsevier/Morgan Kaufmann.
Ericson, C. (2005). Real-time collision detection. Amsterdam/Boston: Elsevier.
Erleben, K. (2005). Physics-based animation. 1st Aufl. Hingham: Charles River Media.
Georgii, J., Lagler, D., Dick, C., & Westermann, R. (2010). Interactive Deformations with Multigrid Skeletal Constraints. In: Proceedings of the 7th Workshop On Virtual Reality Interaction and Physical Simulation (pp. 39-47).
Hensel, T.(2011). Modellbasierter Entwicklungsprozess für Automatisierungslösungen. Technische Universität München.
Jensen, S. (2007). Eine Methodik zur teilautomatisierten Generierung von Simulationsmodellen aus Produktions-datensystemen am Beispiel einer Job-Shop-Fertigung. Kassel: Univ. Press.
Kiefer, J., Baer, T, & Bley, H. (2006). Mechatronic-oriented Engineering of manufacturing Systems Taking the Example of the Body Shop. In 13th CIRP International Conference on Life Cycle Engineering, Leuven.
Lacour, F.-F. (2011). Modellbildung für die physikbasierte Virtuelle Inbetriebnahme materialflussintensiver Produktionsanlagen. Technische Universität München.
Lindworsky, A. (2011). Teilautomatische Generierung von Simulationsmodellen für den entwicklungsbegleitenden Steuerungstest. Technische Universität München.
Kühn, W. (2006). Digitale Fabrik. München: Hanser.
Millington, I. (2007), Game Physics Engine Development. San Francisco: Morgen Kaufmann Publishers.
Reinhart, G., Stich, P., Hensel, T., & Lacour, F.-F. (2011). Digitale Fingerübungen. In Montagetechnik (1), (pp. 93–94).
Reinhart, G., & Lacour, F.-F. (2009). Physically based Virtual Commissioning of Material Flow Intensive Manufacturing Plants. In: M. F. Zaeh & H. A. ElMaraghy (Eds.), 3rd International Conference on Changeable, Agile, Reconfigurable and Virtual Production. München: Utz.
Reinhart, G., & Lacour, F.-F. (2010). Physikbasierte mechatronische Simulation materialflussintensiver Produktionsanlagen. In Jürgen Gausemeier (Ed.), 7. Paderborner Workshop Entwurf mechatronischer Systeme.
Reinhart, G., & Lacour, F.-F. (2011). Design Metaphors for Physically based Virtual Commissioning. In 44th CIRP International Conference on Manufacturing Systems.
Reinhart, G., & Stich, P. (2011). Auslegung von Transportprozessen mit Hilfe der physikbasierten mechatronischen Simulation. In Jürgen Gausemeier (Ed.), Wissenschaftsforum Intelligente Technische Systeme.
Reinhart, G., & Wünsch, G. (2007). Economic application of virtual commissioning to mechatronic production systems. In: Production Engineering Research & Development 1(4), 371–379.
Röck, S. (2011). Hardware in the loop simulation of production systems dynamics. ProductionEngineering.
Röck, S., & Pritschow, G. (2007). Real-time capable Finite Element Models with closed-loop control - a method for Hardware-in-the-Loop simulation of flexible systems, Production Engineering Research & Development 1(1), 37–43.
Servin, M., Lacoursière, C., Nordfelth, F., & Bodin, K. (2010). Hybrid, Multiresolution Wires with Massless Frictional Contacts. In IEEE Transactions on Visualization and Computer Graphics 99 (RapidPosts).
Somic (2011). SOMIC Verpackungsmaschinen GmbH & Co. KG. http://www.somic.de/
Strahilov, A, Ovtcharova, J., & Bär, T. (2012). Development of the physics-based assembly system model for the mechatronic validation of automated assembly systems. In Proceedings of the Winter Simulation Conference.
Timmer, W., & Lauscher, J. (2010). Die Virtuelle Inbetriebnahme am Beispiel einer mechatronischen Produktionsanlage. VDI/VDE Workshop Virtuelle Inbetriebnahme.
Van Bergen, G. J. (2004). Collision detection in interactive 3D environments. Boston: Elsevier/Morgan Kaufman.
Wegener, F. (2009). Mit Simulation Sparen. In: IEE (9), 64–65.
Wegmann, D. (2010). Methoden der Mechatronischen Modularisierung. In ASQF (Ed.), Automation Day, Nürnberg.
Wünsch, G. (2010): Testen Testen Testen. Mechatronic & Engineering (5), 46–47.
Zäh, M. F., & Lindworsky, A (2010). Automatic Model Generation for Virtual Commissioning: In CIRP (Ed.), Proceedings International Conference on Competitive Manufacturing, (pp.27-32). Paris: CIRP 2010.
Zäh, M. F., Spitzweg, M., & Lacour, F.-F. (2008). Application of a physical model for the simulation of the material flow of a manufacturing plant. Information Technology 50(3), 192-198.
Published
How to Cite
Issue
Section
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
The copyediting stage is intended to improve the flow, clarity, grammar, wording, and formatting of the article. It represents the last chance for the author to make any substantial changes to the text because the next stage is restricted to typos and formatting corrections. The file to be copyedited is in Word or .rtf format and therefore can easily be edited as a word processing document. The set of instructions displayed here proposes two approaches to copyediting. One is based on Microsoft Word's Track Changes feature and requires that the copy editor, editor, and author have access to this program. A second system, which is software independent, has been borrowed, with permission, from the Harvard Educational Review. The journal editor is in a position to modify these instructions, so suggestions can be made to improve the process for this journal.