Approaches for the Simulation of Deformable Objects in Manufacturing Systems

Main Article Content

Gunther Reinhart
Peter Stich


The validation of control software using methods of Virtual Commissioning (VC), with its origin in the field of machine tools, gains more and more importance in other application areas like process engineering or material-flow-intensive production systems. Especially because of the increasing complexity of technical systems the validation of the control software quality is a major challenge in production technology. To reduce the efforts of modeling and to increase the value of simulation results, a so-called physically model is integrated in the VC. Currently the physically based Virtual Commissioning is restricted to rigid body simulation objects. In this publication new methods for the simulation of deformable objects are shown and validated in an industrial context. Therefore the hybridization of existing simulation methods from computer science using so called physic engines is introduced as a method that simplifies the description of complex simulation objects by adapting well known simulation models. The new approach is comparable to a mixture of a multi body simulation and a real-time finite element simulation.

Article Details

How to Cite
Reinhart, G., & Stich, P. (2013). Approaches for the Simulation of Deformable Objects in Manufacturing Systems. Industrial and Systems Engineering Review, 1(1), 68-74.


Albert, W. (2010). Total Cost of Ownership bei Prozessleitsystemen. In, atp edition (1/2), 24–30.

Eberly, D. H., & Shoemake, K. (2004). Game physics. Boston: Elsevier/Morgan Kaufmann.

Ericson, C. (2005). Real-time collision detection. Amsterdam/Boston: Elsevier.

Erleben, K. (2005). Physics-based animation. 1st Aufl. Hingham: Charles River Media.

Georgii, J., Lagler, D., Dick, C., & Westermann, R. (2010). Interactive Deformations with Multigrid Skeletal Constraints. In: Proceedings of the 7th Workshop On Virtual Reality Interaction and Physical Simulation (pp. 39-47).

Hensel, T.(2011). Modellbasierter Entwicklungsprozess für Automatisierungslösungen. Technische Universität München.

Jensen, S. (2007). Eine Methodik zur teilautomatisierten Generierung von Simulationsmodellen aus Produktions-datensystemen am Beispiel einer Job-Shop-Fertigung. Kassel: Univ. Press.

Kiefer, J., Baer, T, & Bley, H. (2006). Mechatronic-oriented Engineering of manufacturing Systems Taking the Example of the Body Shop. In 13th CIRP International Conference on Life Cycle Engineering, Leuven.

Lacour, F.-F. (2011). Modellbildung für die physikbasierte Virtuelle Inbetriebnahme materialflussintensiver Produktionsanlagen. Technische Universität München.

Lindworsky, A. (2011). Teilautomatische Generierung von Simulationsmodellen für den entwicklungsbegleitenden Steuerungstest. Technische Universität München.

Kühn, W. (2006). Digitale Fabrik. München: Hanser.

Millington, I. (2007), Game Physics Engine Development. San Francisco: Morgen Kaufmann Publishers.

Reinhart, G., Stich, P., Hensel, T., & Lacour, F.-F. (2011). Digitale Fingerübungen. In Montagetechnik (1), (pp. 93–94).

Reinhart, G., & Lacour, F.-F. (2009). Physically based Virtual Commissioning of Material Flow Intensive Manufacturing Plants. In: M. F. Zaeh & H. A. ElMaraghy (Eds.), 3rd International Conference on Changeable, Agile, Reconfigurable and Virtual Production. München: Utz.

Reinhart, G., & Lacour, F.-F. (2010). Physikbasierte mechatronische Simulation materialflussintensiver Produktionsanlagen. In Jürgen Gausemeier (Ed.), 7. Paderborner Workshop Entwurf mechatronischer Systeme.

Reinhart, G., & Lacour, F.-F. (2011). Design Metaphors for Physically based Virtual Commissioning. In 44th CIRP International Conference on Manufacturing Systems.

Reinhart, G., & Stich, P. (2011). Auslegung von Transportprozessen mit Hilfe der physikbasierten mechatronischen Simulation. In Jürgen Gausemeier (Ed.), Wissenschaftsforum Intelligente Technische Systeme.

Reinhart, G., & Wünsch, G. (2007). Economic application of virtual commissioning to mechatronic production systems. In: Production Engineering Research & Development 1(4), 371–379.

Röck, S. (2011). Hardware in the loop simulation of production systems dynamics. ProductionEngineering.

Röck, S., & Pritschow, G. (2007). Real-time capable Finite Element Models with closed-loop control - a method for Hardware-in-the-Loop simulation of flexible systems, Production Engineering Research & Development 1(1), 37–43.

Servin, M., Lacoursière, C., Nordfelth, F., & Bodin, K. (2010). Hybrid, Multiresolution Wires with Massless Frictional Contacts. In IEEE Transactions on Visualization and Computer Graphics 99 (RapidPosts).

Somic (2011). SOMIC Verpackungsmaschinen GmbH & Co. KG.

Strahilov, A, Ovtcharova, J., & Bär, T. (2012). Development of the physics-based assembly system model for the mechatronic validation of automated assembly systems. In Proceedings of the Winter Simulation Conference.

Timmer, W., & Lauscher, J. (2010). Die Virtuelle Inbetriebnahme am Beispiel einer mechatronischen Produktionsanlage. VDI/VDE Workshop Virtuelle Inbetriebnahme.

Van Bergen, G. J. (2004). Collision detection in interactive 3D environments. Boston: Elsevier/Morgan Kaufman.

Wegener, F. (2009). Mit Simulation Sparen. In: IEE (9), 64–65.

Wegmann, D. (2010). Methoden der Mechatronischen Modularisierung. In ASQF (Ed.), Automation Day, Nürnberg.

Wünsch, G. (2010): Testen Testen Testen. Mechatronic & Engineering (5), 46–47.

Zäh, M. F., & Lindworsky, A (2010). Automatic Model Generation for Virtual Commissioning: In CIRP (Ed.), Proceedings International Conference on Competitive Manufacturing, (pp.27-32). Paris: CIRP 2010.

Zäh, M. F., Spitzweg, M., & Lacour, F.-F. (2008). Application of a physical model for the simulation of the material flow of a manufacturing plant. Information Technology 50(3), 192-198.